Optimized velvet-noise decorrelator

Optimized velvet-noise decorrelator

Abstract

This paper received the 2nd Best Paper Award. Decorrelation of audio signals is a critical step for spatial sound reproduction on multichannel configurations. Correlated signals yield a focused phantom source between the reproduction loudspeakers and may produce undesirable comb-filtering artifacts when the signal reaches the listener with small phase differences. Decorrelation techniques reduce such artifacts and extend the spatial auditory image by randomizing the phase of a signal while minimizing the spectral coloration. This paper proposes a method to optimize the decorrelation properties of a sparse noise sequence, called velvet noise, to generate short sparse FIR decorrelation filters. The sparsity allows a highly efficient time-domain convolution. The listening test results demonstrate that the proposed optimization method can yield effective and colorless decorrelation filters. In comparison to a white noise sequence, the filters obtained using the proposed method preserve better the spectrum of a signal and produce good quality broadband decorrelation while using 76% fewer operations for the convolution. Satisfactory results can be achieved with an even lower impulse density which decreases the computational cost by 88%.

Publication
Proc. Int. Conf. Digital Audio Effects (DAFx)
Date